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Band Structure of Even and lons of Odd Polyenes
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The analysis of experimental data for singlet transitions (4E,) of even polyenes
(I), cations (IT) and anions (III) of odd polyenes show that for infinite chains
AE (N/AE (I)=AE (1)/A4E(I1I)=2:1. It is shown that the energy gap is
equal for the three systems. In cases (IT) and (III) there is a level NBMO) in the
gap which is vacant in (II) and occupied in (IIT). That is why the first optical
transition in (IT) and (IIT) depends on the semiwidth of the gap.
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1. Introduction

Even polyenes (I) and the cations of odd polyenes (II), the allylcarbenium cations,

A iy Py

I II 111

differ considerably in their spectral properties, not only for low values of n [ 17, but
also in the asymptotic case when n — oo (see Fig. 1 and Table 1). The energy gap
AE (1) for even unsubstituted polyenes, equal to the energy of the longest-
wavelength optical transition AE, (1), is evaluated at 2.25 eV [6]. A similar
value is obtained for the «-, w-methyl substituted polyenes (see Table 1). In the
paper of Sorensen, where spectra of allylcarbenium cations [3] are treated, the
following dependence is given for the wavelengths of the longest-wavelength
transition: A(A) = 3305 4+ 655 n (which is analogous to Broocker’s rule for
polymethyncyanines [7-97). According to the above dependence, when n — o,
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'\.\ Fig. 1. Dependence of the energy
2r S 2) of the longest-wavelength singlet
) L | ; ) ) | transitions for even polyenes and
0 1 2 3 4 5 6 cation of odd polyenes on the
n number of vinylene groups

A—> 0, ie. the energy of the longest-wavelength transition 4E, (1)~ 0
respectively the energy gap 4E_(II) — 0. However, the statistical treatment of the
experimental data (see Table 1) gives a finite value for 4E (I) ~ 1 eV. Hence,
the ratio of the energies of the longest-wavelength transition for the two classes of
polyenes is:

AE_ _(D):4E

w, opt

o, optdD) A 2:1 €))
Having in mind that the effects of the solvent and of the substituents were not taken
into account when the asymptotic behaviour of 4E  (I) and 4E . (IT) was being
determined, the precising of ratio (1) would be unrealistic.

There are no experimental data for the optical transitions of the anions of odd
polyenes (1I1). However, there are some data for the anions of odd «-, w-diphenyl-
polyenes [4]. Their extrapolation (see Table 1) leads to values of 4E,, , (III)
which are also of the order of 1 eV, as in case (II}. In view of the fact that for large
values of # the boundary effects may be neglected, we can consider that Eq. (1) is
satisfied by the anions of odd polyenes too.

The existence of the energy gap in the spectrum of one-particle excitations in even
polyenes, which coincides with the energy of the longest-wavelength optical
transition, is determined by the geometry factor (the presence of alternation of the
bond lengths) and the electron correlation [10-20].

Table 1. Experimental values of the longest-wavelength singlet
n I* I1® Ii1e transitions (in eV) for even I, cations of odd polyenes II and
anions of odd -, w-diphenyl polyenes 111

0 676 407 247
1 546 313 232
2 471 267 218
30414 231 207 * 1: H,C-CH=CH~(CH=CH)_—CH,, cf. Ref. [2].
4 380 204 1.96
b II: (CH,),C=CH~(CH=CH),—C(CH,),, cf. Ref. [3].

° III: CgH,~CH-(CH=CH)_-C,H;, cf. Ref. [4].
o 2214 1.10¢  1.21¢
4 Valuescalculated by means of Pade approximation, cf. Ref. [5].
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2. One-Electron Approximation

The purpose of the present paper is to determine the origin of the gap of the ions
of odd polyenes, resp. to find a physical explanation of ratio (1).

In Hiickel’s approximation, the MO energies of a polyene with N atomic orbitals
(A0), considering ideal geometry (equality of all resonance integrals), are given by
the formula [21]:

T
€k=M+2ﬁCOSmk, kzl,Z,...,N. (2)

For odd polyenes (N = 2n + 1), the (n + 1) st MO is nonbonding. The energy of
the longest-wavelength transition for (IT) and (I1D) is identical and equal to [4]:

AEg ) = e, — e, = AEy (1)
AT v = oo
2n + 2

- en+2 - en+1 = —Zﬁ Cos 0 (3)

The energy of the first transition for an isoelectronic even polyene (N = 2n) is
equal to:

. T oo
AEG oD =€, — e, = —4f sin e 0 @)
When n — o0, the ratio of (4) to (3)
sin
. 4 2
21lim, n 1 )
cos —*
2n + 2

Ratio (5) disagrees with (1) not only formally; according to (3) and (4): 4E (1) =
AE, D) — dE, (1) — 4E, . (III) > 0, while the experiment gives finite
values for the energies of the optical transitions. There is bond order alternation
both for even polyenes [21] and for ions of odd polyenes. The expression for the
bond order of an odd polyene with N AO, obtained with all resonance integrals
equal, is of the type (identical for cations and anions):

2 in A in (2 1
[sm _Cosg(2u+1)51n(u+ )AJ

Puust = N 71| 2sin B sin 2p + DB
_N—ln B 7 (6)
N+ 14 2N +2

From the C,, symmetry of all-rrans configuration of the polymethyne chain and
expression (6), it follows that the cations of odd polyenes can be divided in two
classes:
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4p + 1 -polyenes (p = 1,2,3,...)

(CH=CH),
+
HC
(CH=CH),
4p + 3 -polyenesp = 0,1,2,...)
CH—(CH=CH),
HC
CH—(CH=CH),

Completely analogous is the classification that can be made for the anions of odd
polyenes, in which the alternation of bond orders is the same. This classification of
the ions of odd polyenes is not formal. In the case of 4p + 1 polyenes (e.g. penta-
methyn cation) there exists an ionic Kekule structure with the same C,, symmetry

AN

+

as the molecule. In the case of 4p + 3 polyenes (e.g. heptamethyn cation), none of
Kekule’s ionic formulae possesses C,, symmetry, as can be seen from the following
examples:

Quite similar is the situation for the linear polyacenes with an even and odd number
of benzene rings, where a considerable difference exists in the stability of the
Hartree—Fock solutions for finite values of #, as is shown in the work of Paldus and
Cizek [22].

The MO of a polymethyn chain with 2z + 1 AO and C,  symmetry
c—-C—....C-C—C—....C—C—C—....C=C
2 1

1 2 21-1 21 2i+1 n n+l n 1

belong to the irreducible representations B, and A, and are of the type:
W(B) = ¢y 1Ppsr + 2 o, + ®,)
1

‘i‘k(AZ) = z cku((P;t - (p;;)
1

The secular equations for both classes of MO are:

ey — €) + Bycy—1 + Byyy =0
Cpei(@ =€) + By + Bicrii, =0
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By means of the method of finite differences, from the above equations for MO
energies (B, and A4,), one can easily obtain:

e, = o+ /B2 + B2 + 2B.B,cos w,
4n )
=5k

In order to determine the parameter k, from the secular equations, the boundary
conditions and (7), we obtain the transcendental equation: f, sin ik = B, sin jk
( and j are integers), which is identical to the equation derived by Lennard-Jones
for even polyenes [23]. Tt is easily solved only in the case of 4p + 3 polyenes for
MO with 4, symmetry, where (4p + 3 = 2n + 1):

k=12,...,p.

In this case Eq. (7) coincides with the formula given by Rebane [24] for odd
polyenes of the following structure:

For 4p + 3 polyenes the nonbonding MO also belongs to the irreducible rep-
resentation A,. For this MO the orbital coefficients with even indices ¢,, = 0 and
those with odd indices:

IR
Cusr = (—0'4/2 \/7[‘—-1“1 Vot = Bilbos (B # Bo) ®)

From (8) and the condition for alternancy of the system, we obtain for the electron
charge of the atoms the expression:

2P -1
S iy (=012....p) )

gy =1 9oy =1 F
The minus sign related to cations and the plus sign to the anions.

In the case of 4p + 1 polyenes the NBMO is with B, symmetry. This follows from
the development of the secular determinant, and leads to a polynomial of the type
(@ — €)-P,,[(x — e)*], where P, [(x — ¢)*] is a polynomial containing only even
powers of (o — e).

The orbital coefficients of the NBMO are ¢,, = 0, and:

_ -1
Cupy =1 +(")[\/W§ (10)
The charges respectively:

2
- (21 =1

gy =1 Gy =1 F1 722y 2 ) (=012...p) (1
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Depending on whether the alternation in the bond lengths is taken into account or
not, the charge distribution in the ions of the odd polyenes differs considerably.
The treatment of ideal geometry (8, = f3,) gives for the electron charges of atoms
with even indices [21]: ¢,, = 1, and those of atoms with odd indices (for a poly-
methyn chain with 2rn + 1 AO):

1
n+1

G+ =1 F

When the alternation is taken into account, the values of the electron charges alter
monotonously with the change of 1 for bothr¢lasses of polyenes. In the asymptotic
case (p — oo) for 4p + 3 polyenes

-1

q; = 1, Gopr1 =1 F 2 (12)
and for 4p + 1 polyenes
_rr-1
7, = 1, Goper =1 F 211 (13)

For large values of p, the boundary effects can be neglected, hence w, in (7) for
both types of polyenes alters in the interval

0o <7
Consequently, the energy gap for both cases is identical and equal to:

AE (1) = AE (1) = 4E_(III) = 2|8, — B = 4

geom

Since the odd polyenes also possess a NBMO, the energy of the longest-wavelength
transition for ions of odd polyenes will be equal to the halfwidth of the gap

dE, D) = 4E, () = 124F, (1) = 1/24 ., = B, — By (14)

It is exactly twice less than the energy of the longest-wavelength transition for an
even polyene [10], which is equal to the energy gap:

AEoo,opt(I) = AEOO(I) = 2|ﬁd - ﬁsl = Ageom (15)

where the nonbonding MO is absent. From (14) and (15), it follows that (1) is
satisfied:

Ao _ 51 | 16

4E (1) / (16)
The geometry components of the energy gap satisty Eq. (1) on condition that bond
order alternation is equal for even and ions of odd polyenes. Equal or similar
alternation for even and ions of odd polyenes is physically acceptable in the asymp-
totic case, taking into account not only the expressions for bond orders obtained by
Hiickel’s method, but also the numerical values obtained by means of the PPP
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method [25, 26]. This can be seen from the molecular diagrams of the cations of
nonamethyn:

\N O 0
W

and octatetraene

9 03 03
02~ & S5
Q

The calculations have been done with the same parametrization as in paper [27].
The above molecular diagrams have been obtained without taking into account the
configuration interaction. The molecular diagrams of the cations of heptamethyn :

Ay
QW\"

and hexatriene

N O
oIy S
Q.

have been obtained (using the same parametrization) by means of the SCF-CI
method, taking into account the electron correlation through the inclusion of all
biexcited configurations. As can be seen from the molecular diagrams, bond order
alternation is clearly marked both for even polyenes and for cations of odd
polyenes. No firm conclusion about the geometry in the asymptotic case can be
made on the basis of the bond order alternation of the short polyenes. The close
values of bond orders for both classes of polyenes however, give us reason to
suppose identical or similar geometry when # — oo, in both cases.

Ratio (1) can be satisfied including electron correlation too (see the text below),
only if an identical or very similar bond order alternation is presumed.

3. Influence of the Electron Correlation

However, the presence of an energy gap in the case of even polyenes cannot be
explained by means of the geometry factor alone. A review of the studies on even
polyenes [10-20] shows that with these, as with all quasi-monodimensional
systems with delocalized electrons, the electron correlation plays an important
part in determining the energy gap. If by 4_,,, we denote the factor determined by
the electron correlation, then the width of the energy gap is given by the expression:

AEOO = \Y Acz:orr + Ageom (17)

The above equation, derived at first for polyenes only [12, 17], is valid for any
arbitrary homonuclear systems [28, 297 with a closed shell. It was derived on
condition that the electron charge g of the atoms is equal to 1. This condition is not
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fulfilled for the ions of odd polyenes, but it can be shown, however, that Eq. (17)
is valid for them too.

The effects of electron correlation can be taken into account by means of the
extended Hartree—Fock method in the version of the alternant molecular orbitals
(AMO) [30-32]. The MO of an odd polyene (cation) with 2z + 1 AO:

* 0 * * o] *
cccCc-.-..C—--..C~--..C
1 2 3 " v 2n+1

can be expressed as follows:

bonding MO
LN 0O 0 o
wk = z cku(pu + Z Ckvgov
antibonding MO

=L, 0O o0 o0
‘pE = Z cE’tqDﬂ - z Cry @y
According to the AMO method the wave function of the polyene cation may be
represented in the form:

1
2n!

where % and yf are AMO with a (1) and (]) spin:

P = W jo Gar. . o 4B . 2B (18)

® (4}
Yr=sinb, Y +cosb, (19)

. 0
f=cosf, Y —sinf, Y
The vacant NBMO is not included in expression (18).

The secular equations for AMO with « spin (the secular equations for AMO with
f spin are analogous and their solution for the given system leads to the same
result) will take the form:

sin 0, & (F2, — EF) + c0s 0, Y ¢, Fo = 0
¢
o o (20)
sin 0, )" ¢ Fi + cos O, (Fo, — EJ) = 0
¢

In PPP- [25, 26] and Hubbard approximation [33] the matrix elements of the
HF-operator in the unrestricted HF method are [28]:

Fiy=Pu, o€, p (21)
(1 and v are neighbours)

F, 2 = PP + '[Py + Pluon] (21a)

up(vv) T
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where
Po=2 ik: c,sin’ 0, = 1/2q, — }Ef:f# cos 20, = 1/2q, — 5,

K
PP o= 1)2q, + 6, (22)
P;, =1/29, + 9,
P, = 1/2q, - 9,

Taking into consideration expressions (21) and (22), the secular equations (20)
become (for simplicity the Coulomb integral of the C atom « is assumed to be 0):

0
sin 0,¢,,(1/2q,y — 6,7 — Ef) + cos 0, ) ¢, B,, =0
' 23)

It
o

0
Sin 0k Z Ckauv + cos gkckv(l/zqu + 5vy - EI?)
@

where y is the one centre Coulomb integral between the 2p, AO of the C atom,
4, and c,,, are the selfconsistent values of the electron charges and the coefficients
of MO. If sin 8, = cos 0, then 6, = §, = 0 and the secular Egs. (23) convert into
the equations of the conventional HF method:

o
&(12q,7—¢) + X By =0
. 0 (24)
Z Ckuﬂuv + Ckv(l/zquy - ek) =0
n

In the above equations, the energies e, do not coincide with the energies determined
by means of (2) or (7). They depend on the geometry of the polymethyn chain, if a
bond order alternation is assumed, expressed by the resonance integrals f, and f3,
in expression (21).

It follows from (23) and (24) that:
sin 0,(1/2,y — 6,9 — Ef) + cos 0, (e, — 1/24,7) = 0
sin 0, (e, — 1/2,y) + cos 0, (1/2gy + 6,y — EJ) =0

If in (25) a summation is carried out over all -, respectively v-, and the following
notations are introduced :

(25)

1290, (26)
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the secular equations (25) take the form

sinGk(f— 5*)) —E,;")+cos@k(€k—f') =0
| P o o o (27)
sin#, (e, —f) +cosO(f+dy — E)=0

The solution of the above secular equations leads to the following expression for
the AMO energies (the same for AMO with o and f spin):

- % 0 * 0
' +f+d-0 x 0
o=t 020y /(f 8 a) +@-hHe-n e
where "
1 * O
d=3(6 +9)
The minus sign relates to the nonbonding, and the plus sign to the antibonding
AMO.

For n >» 1, (see Eqs. (26))
1 n
= Zk: cos 26, (29)

In Hiickel’s approximation, according to Eqs. (8-13)

* 0

Z q;t - Z qv =1

u v
Hence, forn >» 1:

0 0 . 0

f—f—0, 6§ —0—0.

These conditions are fulfilled not only for ideal geometry of the polymethyn chain,
but also when bond length alternation is present (f, # f,)-

Under the above conditions, (28) becomes
ErP=1/2y + /6% + €. (30)
From (27) and (30) we obtain:
o
VO + e
Egs. (30) and (31) coincide with the equations for even polyenes [12, 17]. The
energy gap in both cases is equal to:

cos 20, (31

0 + ée? (32)

where e, is the highest occupied MO. For ideal geometry B, = B, = P) theenergy
gap AE = 20y, i.e. it is determined by the electron correlation only. If f; # f,
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thene, = |B, — B,| and

AE, = /487 + 4B, — B = /Al + Do
i.e. we obtain Eq. (17).

However, in the case of cations of odd polyenes, the longest-wavelength transition
is determined by the transition of an electron from the »’th MO to the vacant
NBMO (¥, );itwill beequal to the halfwidth of the gap 4E (1) = 1/24E  (IT)
(see Fig. 2), hence, Eq. (1) is satisfied.

For cations of odd polyenes one may expect an intensive transition with an energy
to the gap, just as for even polyenes,

In the asymptotic case, one may expect the same properties for both anions and
cations of odd polyenes. The nonbinding NBMO (¢, , ;) of the anions is doubly
occupied and the longest-wavelength transition will take place from the NBMO to
the lowest antibonding MO. The treatment of cations of odd polyenes may be
generalized for the anions too. In this case the wave function is expressed in the
form;

& = — sz, B UYL, 0, ()
V(@n+ 2)

In expression (33) for NBMO (¥, ,), sinf,,, = cos0,,,, i.e. the correlation
correction to NBMO is equal to 0 (E%”, = e, ,). For n » | the matrix elements
of the HF-operator [31, 32] are unchanged — their correction is of the order 1/n
[28]. For the AMO energies, respectively the energy gap, the same expressions are
obtained [30-32] as in the case of cations. In contrast, the longest-wavelength
transition will be determined by the transition of an electron from NBMO to the
lowest antibonding AMO, i.e. the transition energy will also be equal to the half-
width of the gap (Fig. 2). It follows from here that Eq. (1) is satisfied too.

As in the case of cations, the similar bond order alternation of the even polyenes
is a necessary condition for the fulfilment of Eq. (1).

empty empty empty

Fig. 2. Band structure and scheme
of electron transitions corres-

ponding to the longest-wave-
= - 7z + 2 length optical transition for even
n n n polyenes and ions of odd polyenes
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The exact values of the ratios
4E, (D/AE, (1)

probably deflect a little from the ratio 2:1. This can easily be explained by a certain
difference in the bond order alternation of the even and the ions of odd polyenes.

4. Conclusion

The problem of the contribution of the correlation (4,,,,) and geometry (4 geom)
component of the energy gap, which is treated for even polyenes in papers [10-20],
is not discussed here. A realistic, quantitative evaluation of the ratio A or/ A geom 1N
the framework of the above mentioned semiempirical approximations can be done
if only we know the exact experimental bond order alternation in infinite polyenes
(there are no such data), as well as the value of the ratio B,/8,. The detailed study
of this problem is the subject of a separate research, and its results will be reported
in a following communication.
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